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Galilean-invariant lattice-Boltzmann models with H theorem
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We demonstrate that the requirement of Galilean invariance determines the choice ofH function for a wide
class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations. The requiredH
function has the form of the Burg entropy forD52, and of a Tsallis entropy withq512(2/D) for D.2,
whereD is the number of spatial dimensions. We use this observation to construct a fully explicit, uncondi-
tionally stable, Galilean-invariant, lattice-Boltzmann model for the incompressible Navier-Stokes equations,
for which attainable Reynolds number is limited only by grid resolution.
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I. INTRODUCTION

Lattice-Boltzmann models of fluids@1,2# evolve a single-
particle distribution function in discrete time steps on a re
lar spatial lattice, with a discrete velocity space compris
the lattice vectors themselves. The single-particle distri
tion corresponding to lattice vectorci at lattice positionx and
time stept is denoted byNi(x,t). The simplest variety of
lattice-Boltzmann models employ a Bhatnagar-Gross-Kro
~BGK! operator@3#, so that their evolution equation is

Ni~x1ci ,t1Dt !5Ni~x,t !1
1

t
@Ni

eq~x,t !2Ni~x,t !#,

for i 51, . . . ,b. Here b is the coordination number of th
lattice, Ni

eq(x,t) is a specified equilibrium distribution func
tion that depends only on the values of the conserved qu
tities at a site, andt is a characteristic collisional relaxatio
time. Using the Chapman-Enskog analysis, it is possible
show that the mass and momentum moments of the distr
tion function will obey the Navier-Stokes equations for ce
tain choices of equilibrium distribution@1#.

The viscosity appearing in the Navier-Stokes equati
obtained from these models is proportional tot2 1

2 . To
lower this and thereby increase Reynolds number, pract
ners often over-relax the collision operator by using valu

of t in the range (12 ,1#. For sufficiently smallt, however,
the method loses numerical stability, and this considera
limits the lowest Reynolds numbers attainable.

In an effort to understand these instabilities, there
been much recent interest inentropic lattice-Boltzmann mod
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els @4–6#. These models are motivated by the fact that
loss of stability is due to the absence of anH theorem@6#.
Numerical instabilities evolve in ways that would be pr
cluded by the existence of a Lyapunov function. The id
behind entropic lattice-Boltzmann models is to specify anH
function, rather than just the form of the equilibrium. O
course, the equilibrium distribution will be that which ex
tremizes theH function. The evolution will be required neve
to decreaseH, yielding a rigorous discrete-timeH theorem;
this is to be distinguished from other discrete models of fl
dynamics for which anH theorem may be demonstrated on
in the limit of vanishing time step@7#.

To ensure that collisions never decreaseH, the collision
time t is made a function of the incoming state by solvin
for the smallest valuetmin which does not increaseH. The
value then used ist5tmin /k, where 0,k,1. It has been
shown that the expression for the viscosity obtained by
Chapman-Enskog analysis will approach zero ask ap-
proaches unity@4–6#. Thus, the entropic lattice-Boltzman
methodology allows for arbitrarily low viscosity togethe
with a rigorous discrete-timeH theorem, and thus absolut
stability. The upper limit to the Reynolds numbers attaina
by the model is therefore determined by loss of resolution
the smallest eddies, rather than by loss of stability@6,8,9#.

In a recent review of the subject, Succi, Karlin, and Ch
@10# have pointed out that entropic lattice-Boltzmann mod
have three important desiderata: Galilean invariance, n
negativity of the distribution function, and ease of determ
ing the local equilibrium distribution at each site and at ea
time step.

In this paper, we shall construct entropic lattic
Boltzmann models for the incompressible Navier-Stok
©2003 The American Physical Society03-1
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equations which are Galilean invariant to second order in
Mach number expansion of the distribution function~quasip-
erfect in the terminology of Ref.@10#!. We shall show that
the requirement of Galilean invariance makes the choice
H function unique. We shall show that the required functi
has the form of the Burg entropy@11# in two dimensions, and
the Tsallis entropy in higher dimensions. While the ana
gous problem for the compressible Navier-Stokes equat
is difficult and remains outstanding, the purpose of this pa
is to point out that the incompressible case is nontrivial a
interesting in its own right.

Finally, a point of clarification: Throughout this pape
when we describe the lattice-Boltzmann model as ‘‘inco
pressible,’’ we really mean that it is faithful to the Navie
Stokes equations only in the asymptotic limit of incompre
ibility. This means that the Mach number must scale with
Knudsen number, and the fluctuation of density about
mean must scale with the Knudsen number squared. Ind
this is the same sense in which any quasicompressible
model may be said to simulate incompressible fluid eq
tions. In this asymptotic limit the pressure is determined
an elliptic equation, and the equation of state becomes ir
evant.

II. EQUILIBRIUM DISTRIBUTION

We consider a Bravais lattice of coordination numberb in
D dimensions. We denote the lattice vectors byci , wherei
51, . . . ,b, and their magnitudes byc5uci u. The restriction
to a single-speed model on a Bravais lattice is done solely
the sake of simplicity in presentation. A future publicatio
will generalize the results of this paper to multispeed latti
Boltzmann models@12#.

We demand that the lattice symmetry group be su
ciently large that the only fourth-rank tensors that are inva
ant under its group action are isotropic. The mass and
mentum densities are given by

r5(
i 51

b

mNi ~1!

and

ru5(
i 51

b

mciNi , ~2!

where m is the particle mass andu is the hydrodynamic
velocity D vector. TheseD11 quantities must be conserve
in collisions.

If we regard Ni , for i 51, . . . ,b, as coordinates in a
b-dimensional space, the conservation laws~1! and ~2! re-
strict the collision outcomes to a@b2(D11)#-dimensional
subspace. Since the conserved quantities are linear func
of Ni ’s, the non-negativity requirement

Ni>0 ~3!

is satisfied within a compact polytope whose faces are gi
by theb equations,Ni50 for i 51, . . . ,b. In order to ensure
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that H is altered only by collisions and not by propagatio
we assume that theH function is of trace form

H5(
i 51

b

h~Ni !,

whereh8(x)>0 for x.0. If limx→0h8(x)5`, then the nor-
mal derivative ofH goes to negative infinity on the polytop
boundary, enforcing the non-negativity constraint@Eq. ~3!#.
The purpose of this paper is to demonstrate that the requ
ment of Galilean invariance uniquely determines the cho
of function h(x).

In passing, we note that our choice of the form ofH
differs from that of Karlin, Ferrante, and O¨ ttinger @5#, which
is of the form H5( i

bNi ln(Ni /Wi), where Wi are speed-
dependent weights~equal to the global equilibrium at zer
flow!. That is, prior work has allowed weighted contributio
to H and found solutions for whichh has the form of a
~relative! Boltzmann entropy, while the present work a
sumes uniform contributions toH and finds solutions for
which h is not a Boltzmann entropy. Both approaches a
capable of yielding Galilean-invariant hydrodynamics.
more general form forH which will subsume both ap-
proaches as special cases remains an interesting theor
challenge.

The equilibrium distribution function may be found b
extremizingH with respect toNi , subject to the constraint
@Eqs.~1! and ~2!#

05
]

]Ni
S H2

m

m
r2

b

m
•ruD ,

wherem/m and b/m are Lagrange multipliers. We quickly
find

05h8~Ni !2m2b•ci ,

and so

Ni
eq5f~m1b•ci !, ~4!

where the functionf is the inverse function ofh8. The con-
stantsm and b are determined by Eqs.~1! and ~2!. It is
usually difficult to find an exact analytic expression for the
in terms of the conserved quantitiesr andru, though some
equilibria are known for which this is possible@8,9#. Alter-
natively, one may solve for them numerically or perform
Taylor expansion in Mach number. We adopt the latter
proach below.

III. GALILEAN INVARIANCE

We seek to Taylor expand the equilibrium distribution
Mach number because~i! we can do so analytically,~ii ! only
the first two terms of that expansion determine the form
the incompressible Navier-Stokes equations, and~iii ! that ex-
pansion is a useful initial guess for any numerical solutio
From general symmetry arguments, it is clear thatb will be
proportional to the hydrodynamic velocityu, so that we may
3-2
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begin our Mach number expansion by expanding Eq.~4! for
small b. We get

Ni
eq5f~m!1f8~m!b•ci1

1

2
f9~m!bb:cici1•••.

Inserting this into Eqs.~1! and ~2!, and using general prop
erties of the Bravais lattice, we find

r5mbf~m!1
mbc2

2D
f9~m!b21•••

and

ru5
mbc2

D
f8~m!b1•••,

where the ellipses denote third or higher order terms in M
number. Inverting this perturbatively we find that, to seco
order in Mach number, the Lagrange multipliers are given

m5x2
D

2c2

S r

mbD
2

f9~x!

@f8~x!#2
u21•••,

wherex[h8(r/mb), and by

b5
D

c2

r

mb

f8~x!
u1•••.

Inserting these into Eq.~4!, we obtain the equilibrium distri-
bution

Ni
eq5

r

mbF11
D

c2
ci•u1

D2

2c4

f~x!f9~x!

@f8~x!#2

3S cici2
c2

D
1D :uu1•••G . ~5!

Now, for lattice-Boltzmann models on a Bravais lattice, it
well known that a Chapman-Enskog analysis based on
equilibrium distribution

Ni
eq5

r

mbF11
D

c2
ci•u1

D~D12!

2c4
gS cici2

c2

D
1D :uu1•••G

~6!

will give rise to the incompressible Navier-Stokes equatio

“•u50

and

]u

]t
1gu•“u52

1

r
“P1n¹2u.

Comparing Eqs.~5! and ~6!, we identify
02510
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D12Df~x!f9~x!

@f8~x!#2
.

If the factorg is not unity, Galilean invariance will be bro
ken. Thus we demandg51, and this yields the second-orde
nonlinear differential equation

f~x!f9~x!5S 11
2

D D @f8~x!#2.

The general solution to this equation is of the form

f~x!5CD/2~x2aC!g,

whereC anda are arbitrary constants, andg is to be deter-
mined. We quickly find thatg must be either 0 or2D/2.
Since a constantf would not yield a well definedh8, we see
that we must havef(x)5CD/2(x2aC)2D/2, whenceh8(x)
5C(a1x22/D), and this integrates to give

h~x!5H h01C@ax1 ln x# if D52

h01CFax1S x122/D21

122/D D G if DÞ2,
~7!

whereh0 is constant. In fact, the only effect of nonzeroh0 is
to introduce an additive constant toH, and the only effect of
nonunityC is to scaleH by a constant factor. In other words
h(x) is uniquely specified only to within additive and mu
tiplicative constants. With this understanding, we may s
that the requirement of Galilean invariance has uniqu
specified the choice ofH. We also note that limx→0h8(x)
5`, so the non-negativity constraint will be enforced by t
dynamics.

Finally, we write the global Lyapunov functionH[(xH
by summingh„Ni(x,t)… over the lattice. Since the total mas
is conserved we have complete freedom to choosea, and so
to within additive and multiplicative constantsH may be
written

H~ t !}5 (
x

(
i

ln@Ni~x,t !# for D52

(
x

(
i

@Ni~x,t !#122/D2Ni~x,t !

2/D
for DÞ2,

for appropriate choices ofa and C. This has the form of a
Burg entropy@11# for D52, and a subadditive Tsallis en
tropy @13# with parameter

q512
2

D

for DÞ2. We note thatD<2 corresponds toq<0, andD
.2 corresponds to 0,q,1. It is interesting that it is only in
the infinite-dimensional limit,D→`, where the set of ve-
locities becomes infinite, thatq→1 and we recover the
Boltzmann-Gibbs entropy@14#. We might also expect the
limit of large b at constantD to yield the Boltzmann-Gibbs
entropy, but that demonstration will require the multispe
3-3
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generalization of the present analysis; that work, which w
also provide the details of the Chapman-Enskog analysi
in progress@12#. The numerical implementation of the mod
described herein is likely to require some careful algorithm
optimization, and is likewise left to future publication.

The appearance of the Burg and Tsallis entropies in
context is fascinating. In a footnote of their recent revie
Succi, Karlin, and Chen@10# noted that the entropy that gav
rise to the above-mentioned solvable model for a compr
ible fluid was related to the Tsallis entropy withq53/2, so
there may be more than one connection with Tsallis therm
statistics@13# lurking here. There are precious few situatio
in which the origins of Tsallis thermostatistics can be trac
analytically to an underlying microscopic dynamical mod
as we have done here.

IV. CONCLUSIONS

We have presented Galilean-invariant, entropic latti
Boltzmann models for the incompressible Navier-Stok
equations. We expect that these models will be useful for
simulation of two- and three-dimensional turbulence.
noted by Succi, Karlin, and Chen@10#, the problem of find-
s

tt

v.

ro

02510
ll
is

c

is
,

s-

-

d
,

-
s
e

s

ing perfect models for lattice models of thecompressible
Navier-Stokes equations is much more difficult and may w
be impossible. We found it interesting that the simpler pro
lem, for incompressible fluids, is itself very nontrivial. I
particular, the appearance of the Burg and Tsallis entrop
for the H function is surprising. These entropies have he
tofore been associated with long-range interactions, lo
time memory, or a fractal space-time structure. This wo
indicates that they may also be relevant to models with d
cretized space-time and finite domain connectivity, and t
surely warrants future study.
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